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Scale-free networks with tunable degree-distribution exponents
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We propose and study a model of scale-free growing networks that gives a degree distribution dominated by
a power-law behavior with a model-dependent, hence tunable, exponent. The model represents a hybrid of the
growing networks based on popularity-driven and fitness-driven preferential attachments. As the network
grows, a newly added node establishesew links to existing nodes with a probabilip/based on popularity
of the existing nodes and a probability p-based on fitness of the existing nodes. An explicit form of the
degree distributionP(p,k) is derived within a mean field approach. For reasonably ldtgeP(p,k)
~k P F(k,p), where the functionF is dominated by the behavior of 1{kim) for small values ofp and
becomesk independent ap— 1, and y(p) is a model-dependent exponent. The degree distribution and the
exponenty(p) are found to be in good agreement with results obtained by extensive numerical simulations.
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Many complex systems, including social, biological, study a model representing a hybrid of the growing network
physical, economic, and computer systems, can be studied lodels based on popularity-driven and fithess-driven prefer-
network models in which the nodes represent the constituential attachments of new links. As the network grows, a
ents and links or edges represent the interactions betwedgwly added node has a probabiligyof being popularity
constituents[1-5]. Interesting findings in the statistics of driven and a probability 1p of being fitness driven in es-
real-world networks reveal that classical random networkdablishing new links. Thus the resulting network consists of a
[6,7] do not often represent the geometrical or topologicalMixture of two types of nodes, with a fractignestablishing
structure of real-world networki8—18 correctly. Most no- new links based entirely on popularity consideration. The
ticeable of the properties observed are so-called “six degre@odel reflects the fact that not every one, taking the nodes as
of separation]19,20 from one node to any arbitrary node, agents in a population, prefers to follow the popular persons,
and the highly clustering feature. In particular, many net-but instead may prefer to establish relationships with others
works show a power-law degree distribution of the formbased on characters other than the popularity of the agents.
P(k) ~ k™7, with the exponenty taking on values between 2 Our model thus incorporates the inhomogeneous nature of
to 3. This behavior has led to the construction of models ofmany real-world networks in which not all the nodes are
scale-free growing networks. Barabasi and Ali@#) [21] identical. We report results of extensive numerical simula-
proposed a model in which a new node is added in each turfions on the degree distribution for networks of size/ 10
andm new links are established with existing nodes with thenodes, and compare numerical results with an analytic ex-
probability of establishing a link being proportional to the Pression derived via a mean field approach. For reasonably
number of existing links of the nodes. This preferential at-large k, the degree distributiorP(p,k) follows the form
tachment is thus driven entirely by the popularity of existingk P F(k,p), whereF(k,p) is dominated by the behavior of
nodes. Detailed numerical simulations and analytic analysid/In(k/m) for small p and becomek independent fomp
showed thaty=3 for the BA model. The idea of incorporat- — 1. The exponenty(p) can be extracted numerically and
ing preferential attachment in a growing network has led taesults are found to be in good agreement with that of the
proposals of a considerable number of models of scale-fremean field theory.
networks[22—25. Alternatively, models with preferential at- Our model is defined as follows. Initially a fully con-
tachment driven entirely by fitness have also been proposetkected network ofny nodes is constructed, with, typically
[26,27. In these models, each node carries a randomly asef order unity. In this work, we usen,=5. The network
signed fitness value that gives a collective character of thgrows with one new node being added to the existing net-
node other than its popularity, and the probability of estabwork at a time. Each newly added node establishes a number
lishing a new link to an existing node is proportional to the of m new links to existing nodes. With probabilipy the new
product of fitness and the number of existing links. It wasnode establishes links by preferential attachments based on
found that the degree distributida(k) ~k=/In(k/m), with popularity of the existing nodg21], i.e., the probability that
y=2.255 for the fithess-driven modg26]. an existing node is connected is proportional to the degree

Many real-world networks such as paper citations in sci-or the number of link;(t) that nodei carries. With prob-
entific journals, the World-Wide Web, the Internet, and theability 1—p, the new node establishes links by preferential
collaborative networks of actors and actresses, exhibit a dexttachments based on fitness of the existing n¢aéf i.e.,
gree distribution with a network-dependent exponent thathe probability that an existing nodés connected is propor-
takes on values close to but below 3. It is therefore interesttional to the produck(t) %, where the fitness of a node is
ing to construct and analyze models with a tunable degreea randomly assigned value in the intervak@<1 associ-
distribution exponent. In the present work, we propose andted with the node when it is introduced into the network.
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FIG. 1. The degree-distribution functid®(p,k) as a function of ~ where
k on a log-log scale fop=0.5 andp=0.2(insey. The symbols give
numerical results averaging over 10 different realizations of net- 7;
works of size of 10 nodes? T%e lines give the analytic results within Clp) = J p(m) 7= , do;. ©)
. 1 ﬁ(m:p)
the mean field theory.
Substituting Eqs(2) and(4) into Eqg. (1), we obtain
For p=1 (p=0), the present model reduces to the popularity-
driven BA[21] (fithess-driven[26]) model. B(7.,p) = P, ﬂn_ (6)
Detailed numerical simulations have been carried out for v 2 Cp "
our model with networks of size up to 1@odes. Each newly
added node establish@s=5 new links. Figure 1 shows a From now on, we drop the subscriptsand j for brevity.
typical degree-distribution function on a log-log scale for theEquations(6) and (5) can be solved self-consistently for
case ofp=0.5, i.e., a new node randomly chooses to followC(p). Forp(7) being a uniform distribution between 0 and 1,
the popularity-driven or fitness-driven rules in establishingi-€., p(7)=1 for < [0,1], C(p) satisfies
new links, and forp=0.2 (see inset The large size of the N
networks used in this study makes the comparison with ana- Clp) = f
°

()

n
lytic results and the extraction of the exponent in the degree p\ (1- p)nd’/],
distribution easier. The data shown in Fig. 1 represent an 1_5 _TP)
average over 10 different realizations of networks of the

same size. To explore the functional form of the degree disfor which the integral can be performed to obtain the self-
tribution and to extract possible exponent, we need someonsistent equation

guidance from analytic treatment.

The model can be treated analytically by a mean field 1 1-p/2 2(1-p)C(p)
approach1,2,2§. For sufficiently long time, the connectiv- Cp) T P (1-e )- (8)
ity ki(t) of theith node with fithessy, evolves according to
the following continuous time evolution equation Equation(8) can be solved numerically foE(p) for given

value of p. It is found thatC(p) e[1,1.255 for p<[0,1].

ak k(b 7k (1) Note that forp=1, 8=1/2 [see Eq(6)] independent of; as
ot mpz K +m(1-p) k. @D in the BA popularity-driven mode[21]. For p=0, C(0)
j i
j j

=1.255, ang3(7,0)=7/1.255, as in the purely fitness-driven
model[26].

where the first and second terms describe the incremdqt in 10 Proceed, the cumulative probability distribution func-
due to popularity and fitness, respectively. Note thak; 0N (CDF) P,(p,k> k) for a particular fitness; and givenp

=2mt, with the factor of 2 coming from the undirected nature ¢an be found by noting that a degree higher than some value
of the links. We assume thét takes on the form k for a node corresponds to a cutoff in time before which the

node must have been introduced into the network, i.e.,

1/8(7,p) 1/B(1,p)
, @ ppk >k)=73,,[to<t<$) ”p] :<T) "9

t)ﬂ(’fpp)
k

ki(t!tO) = m(%
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Note that a prefactor of/(my+t), which approaches unity

for sufficiently long time, has been ignored in E§). To
obtain the CDF for the whole netwofR(p,k), an average is
taken over a uniform distribution of, thus

1 m\YB7p
P(p,k)=f (;) dxy,
0

with B(7,p) given by Eq.(6). The probability distribution
function(PDPF of degrees in the networR(p, k) is related to
P(p,k) through

(10)

Pk =~ P(p.K). (11

Using Eqg. (100 and by making the substitutionx
=In(k/m)/[p/2+(1-p)n/C(p)], Eq. (11) gives

C(p)
k(l_p) Xo X

where the lower limit of the integraly=agln(k/m) and the
upper limitx;=a4In(k/m), with

x| @7x

P(p,k) = dx, (12)

1
“0 b2 +(L-pIC(p) 9
and
2
= 5 (14)

We aim at getting the functional form d&®(p,k) and in
particular the dependence &t givenp. The integral in Eq.
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FIG. 2. The exponenf(p) characterizing the degree-distribution
function as obtained by fitting to numerical simulation results
(symbolg for networks of size 10 nodes for values op from
p=0 to p=1 in steps of 0.1, and by the mean field the¢uptted
line) given by y(p)=1+1/p/2+(1-p)/C(p)] with C(p) given by
Eq. (8).

form for P(p,k). For reasonably largk, e.g., k~10% or

above, the second term in the parentheses is small compared

to unity, especially for small values qf. Hence, Eq.(15)

suggests thal(p,k) ~ kP /In(k/m), where

N 1
[p/2+(1-p/C(p)]’

with C(p) given by Eq.(8) within mean field theory. Numeri-

Yp)=1+ap=1 (16)

(12) can be carried out by parts, and only the “surface” termcally, we fit the degree-distribution function to the form

survives in the limit of Irtk/m)> 1. It follows from the fact
that 1/ takes on the maximum value of® for x in the
interval [xg,%;], and thus the integralfﬁé(e‘xlxz)dx
sx(‘)lficl](e‘xlx)dx, with x;*<1 for large k. Equation(12)
thus gives

5 22

PP = ml-p) ag In(k/m) a m

(15

kP/In(k/m) and extract the exponent(p) directly from
results of numerical simulations for each valuepah steps

of 0.1. However, ap— 1, one should be more careful in
handling Eq.(15) in numerical extraction of the exponent as
the prefactor 1(1-p) diverges and the [k/m) term be-
comes unimportant due to cancellation effect from the terms
in the parentheses. In this case, it is more convenient to work
from the p=1 limit and extract a functional form from
Eq. (15) that is valid forp— 1. The result isP(p,k) ~[p/2
+(1-p)/C]l(k/m)~"P/mp?, where y(p) is again given by
Eq. (16). This form is used to extract the exponextp) for
p=0.9 and 1.0. Fop=<0.8, using either functional form ex-

Equation(15) is the main result of the mean field treatment. tracts the same value of Figure 2 shows the exponentp)
It gives the explicitk dependence of the degree-distribution numerically extracted from simulations, together with the

function. It is worth noting that Eq(15) gives the correct
results in both limits ofp— 0 andp— 1. For purely fitness-
driven model, P(0,k)=(k/m)~225%[m In(k/m)] [26]. For

purely popularity-driven model, the (k/m) term in the de-

analytic result. The two sets of results are found to be in
good agreement.

In summary, we proposed and studied a model in which
the nodes are inhomogeneous. The model combines

nominator can be shown to be canceled by the terms in thpopularity-driven and fitness-driven preferential attachments

parentheses, giving(1,k)=2m?k™3 [21].

in growing networks. Extensive numerical simulations were

Results obtained from the mean field theory can be comearried out and a mean field theory was developed. The
pared with numerical results. The solid lines in Fig. 1 showdegree-distribution function shows a predominant power-law

the degree distribution fqy=0.5 andp=0.2(inse} using Eq.

behavior. The exponent takes on a model-dependent, hence

(12). Excellent agreements are found between mean field antinable, value depending on the concentrafiaf nodes for
numerical results. Equatiofl5) also suggests a functional which the links are established by a popularity-driven
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mechanism. The exponent(p) takes on values between in good agreement with results obtained by numerical simu-
2.255 and 3, which lie within the range of values pbb-  lations.

served in many real-world networks. Analytic expressions e wish to thank Oliver K.H. Chung for useful discus-
for the degree-distribution function and the exponetmp) sions on numerical methods on setting up large networks

were derived. Results of mean field theory were found to befficiently, and Professor DaFang Zheng for useful discus-
sions on fitness-driven growing networks.
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