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We propose and study a model of scale-free growing networks that gives a degree distribution dominated by
a power-law behavior with a model-dependent, hence tunable, exponent. The model represents a hybrid of the
growing networks based on popularity-driven and fitness-driven preferential attachments. As the network
grows, a newly added node establishesm new links to existing nodes with a probabilityp based on popularity
of the existing nodes and a probability 1−p based on fitness of the existing nodes. An explicit form of the
degree distributionPsp,kd is derived within a mean field approach. For reasonably largek, Psp,kd
,k−gspdFsk,pd, where the functionF is dominated by the behavior of 1/ lnsk/md for small values ofp and
becomesk independent asp→1, andgspd is a model-dependent exponent. The degree distribution and the
exponentgspd are found to be in good agreement with results obtained by extensive numerical simulations.
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Many complex systems, including social, biological,
physical, economic, and computer systems, can be studied by
network models in which the nodes represent the constitu-
ents and links or edges represent the interactions between
constituents[1–5]. Interesting findings in the statistics of
real-world networks reveal that classical random networks
[6,7] do not often represent the geometrical or topological
structure of real-world networks[8–18] correctly. Most no-
ticeable of the properties observed are so-called “six degree
of separation”[19,20] from one node to any arbitrary node,
and the highly clustering feature. In particular, many net-
works show a power-law degree distribution of the form
Pskd,k−g, with the exponentg taking on values between 2
to 3. This behavior has led to the construction of models of
scale-free growing networks. Barabási and Albert(BA) [21]
proposed a model in which a new node is added in each turn
andm new links are established with existing nodes with the
probability of establishing a link being proportional to the
number of existing links of the nodes. This preferential at-
tachment is thus driven entirely by the popularity of existing
nodes. Detailed numerical simulations and analytic analysis
showed thatg=3 for the BA model. The idea of incorporat-
ing preferential attachment in a growing network has led to
proposals of a considerable number of models of scale-free
networks[22–25]. Alternatively, models with preferential at-
tachment driven entirely by fitness have also been proposed
[26,27]. In these models, each node carries a randomly as-
signed fitness value that gives a collective character of the
node other than its popularity, and the probability of estab-
lishing a new link to an existing node is proportional to the
product of fitness and the number of existing links. It was
found that the degree distributionPskd,k−g / lnsk/md, with
g=2.255 for the fitness-driven model[26].

Many real-world networks such as paper citations in sci-
entific journals, the World-Wide Web, the Internet, and the
collaborative networks of actors and actresses, exhibit a de-
gree distribution with a network-dependent exponent that
takes on values close to but below 3. It is therefore interest-
ing to construct and analyze models with a tunable degree-
distribution exponent. In the present work, we propose and

study a model representing a hybrid of the growing network
models based on popularity-driven and fitness-driven prefer-
ential attachments of new links. As the network grows, a
newly added node has a probabilityp of being popularity
driven and a probability 1−p of being fitness driven in es-
tablishing new links. Thus the resulting network consists of a
mixture of two types of nodes, with a fractionp establishing
new links based entirely on popularity consideration. The
model reflects the fact that not every one, taking the nodes as
agents in a population, prefers to follow the popular persons,
but instead may prefer to establish relationships with others
based on characters other than the popularity of the agents.
Our model thus incorporates the inhomogeneous nature of
many real-world networks in which not all the nodes are
identical. We report results of extensive numerical simula-
tions on the degree distribution for networks of size 107

nodes, and compare numerical results with an analytic ex-
pression derived via a mean field approach. For reasonably
large k, the degree distributionPsp,kd follows the form
k−gspdFsk,pd, whereFsk,pd is dominated by the behavior of
1/ lnsk/md for small p and becomesk independent forp
→1. The exponentgspd can be extracted numerically and
results are found to be in good agreement with that of the
mean field theory.

Our model is defined as follows. Initially a fully con-
nected network ofm0 nodes is constructed, withm0 typically
of order unity. In this work, we usem0=5. The network
grows with one new node being added to the existing net-
work at a time. Each newly added node establishes a number
of m new links to existing nodes. With probabilityp, the new
node establishes links by preferential attachments based on
popularity of the existing nodes[21], i.e., the probability that
an existing nodei is connected is proportional to the degree
or the number of linkskistd that nodei carries. With prob-
ability 1−p, the new node establishes links by preferential
attachments based on fitness of the existing nodes[26], i.e.,
the probability that an existing nodei is connected is propor-
tional to the productkistdhi, where the fitnessh of a node is
a randomly assigned value in the interval 0,h,1 associ-
ated with the node when it is introduced into the network.
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For p=1 sp=0d, the present model reduces to the popularity-
driven BA [21] (fitness-driven[26]) model.

Detailed numerical simulations have been carried out for
our model with networks of size up to 107 nodes. Each newly
added node establishesm=5 new links. Figure 1 shows a
typical degree-distribution function on a log-log scale for the
case ofp=0.5, i.e., a new node randomly chooses to follow
the popularity-driven or fitness-driven rules in establishing
new links, and forp=0.2 (see inset). The large size of the
networks used in this study makes the comparison with ana-
lytic results and the extraction of the exponent in the degree
distribution easier. The data shown in Fig. 1 represent an
average over 10 different realizations of networks of the
same size. To explore the functional form of the degree dis-
tribution and to extract possible exponent, we need some
guidance from analytic treatment.

The model can be treated analytically by a mean field
approach[1,2,26]. For sufficiently long time, the connectiv-
ity kistd of the ith node with fitnesshi evolves according to
the following continuous time evolution equation

] ki

] t
= mp

kistd

o
j

kj

+ ms1 − pd
hikistd

o
j

h jkj

, s1d

where the first and second terms describe the increment inki
due to popularity and fitness, respectively. Note thato j kj
=2mt, with the factor of 2 coming from the undirected nature
of the links. We assume thatki takes on the form

kist,t0d = mS t

t0
Dbshi,pd

, s2d

wheret0 is the time at which theith node was introduced into
the network. Sinceki can at most be increased by one at each
time step, it cannot grow faster thant, thus implying
0,bshi ,pd,1.

The fitnesshi is, in general, chosen from a distribution
rshd. The average of the sumo j h jkj overrshd can be evalu-
ated by

Ko
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For large t, since tb / t→0, the contribution from the term
tbsh j,pd becomes negligible and we have

Ko
j

h jkjL = Cspdmt, s4d

where

Cspd =E rsh jd
h j

1 − bsh j,pd
dh j . s5d

Substituting Eqs.(2) and (4) into Eq. (1), we obtain

bshi,pd =
p

2
+

1 − p

Cspd
hi . s6d

From now on, we drop the subscriptsi and j for brevity.
Equations(6) and (5) can be solved self-consistently for
Cspd. Forrshd being a uniform distribution between 0 and 1,
i.e., rshd=1 for hP f0,1g, Cspd satisfies

Cspd =E
0

1 h

S1 −
p

2
D −

s1 − pdh
Cspd

dh, s7d

for which the integral can be performed to obtain the self-
consistent equation

1

Cspd
=

1 − p/2

1 − p
s1 − e−2s1−pd/Cspdd. s8d

Equation(8) can be solved numerically forCspd for given
value of p. It is found thatCspdP f1,1.255g for pP f0,1g.
Note that forp=1, b=1/2 [see Eq.(6)] independent ofh as
in the BA popularity-driven model[21]. For p=0, Cs0d
=1.255, andbsh ,0d=h /1.255, as in the purely fitness-driven
model [26].

To proceed, the cumulative probability distribution func-
tion (CDF) Phsp,ki .kd for a particular fitnessh and givenp
can be found by noting that a degree higher than some value
k for a node corresponds to a cutoff in time before which the
node must have been introduced into the network, i.e.,

Phsp,ki . kd = PhFt0 , tSm

k
D1/bsh,pdG = Sm

k
D1/bsh,pd

. s9d

FIG. 1. The degree-distribution functionPsp,kd as a function of
k on a log-log scale forp=0.5 andp=0.2 (inset). The symbols give
numerical results averaging over 10 different realizations of net-
works of size of 107 nodes. The lines give the analytic results within
the mean field theory.
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Note that a prefactor oft / sm0+ td, which approaches unity
for sufficiently long time, has been ignored in Eq.(9). To
obtain the CDF for the whole networkPsp,kd, an average is
taken over a uniform distribution ofh, thus

Psp,kd =E
0

1 Sm

k
D1/bsh,pd

dh, s10d

with bsh ,pd given by Eq.(6). The probability distribution
function(PDF) of degrees in the networkPsp,kd is related to
Psp,kd through

Psp,kd = −
]

] k
Psp,kd. s11d

Using Eq. (10) and by making the substitutionx
=lnsk/md / fp/2+s1−pdh /Cspdg, Eq. (11) gives

Psp,kd =
Cspd

ks1 − pd
E

x0

x1 e−x

x
dx, s12d

where the lower limit of the integralx0=a0lnsk/md and the
upper limit x1=a1lnsk/md, with

a0 =
1

p/2 + s1 − pd/Cspd
s13d

and

a1 =
2

p
. s14d

We aim at getting the functional form ofPsp,kd and in
particular the dependence onk at givenp. The integral in Eq.
(12) can be carried out by parts, and only the “surface” term
survives in the limit of lnsk/md@1. It follows from the fact
that 1/x takes on the maximum value ofx0

−1 for x in the
interval fx0,x1g, and thus the integralex0

x1se−x/x2ddx
øx0

−1ex0

x1se−x/xddx, with x0
−1!1 for large k. Equation (12)

thus gives

Psp,kd =
C

ms1 − pd
·
S k

m
D−s1+a0d

a0 lnsk/md F1 −
a0

a1
S k

m
D−a1+a0G .

s15d

Equation(15) is the main result of the mean field treatment.
It gives the explicitk dependence of the degree-distribution
function. It is worth noting that Eq.(15) gives the correct
results in both limits ofp→0 andp→1. For purely fitness-
driven model, Ps0,kd=sk/md−2.255/ fm lnsk/mdg [26]. For
purely popularity-driven model, the lnsk/md term in the de-
nominator can be shown to be canceled by the terms in the
parentheses, givingPs1,kd=2m2k−3 [21].

Results obtained from the mean field theory can be com-
pared with numerical results. The solid lines in Fig. 1 show
the degree distribution forp=0.5 andp=0.2(inset) using Eq.
(12). Excellent agreements are found between mean field and
numerical results. Equation(15) also suggests a functional

form for Psp,kd. For reasonably largek, e.g., k,102 or
above, the second term in the parentheses is small compared
to unity, especially for small values ofp. Hence, Eq.(15)
suggests thatPsp,kd,k−gspd / lnsk/md, where

gspd = 1 +a0 = 1 +
1

fp/2 + s1 − pd/Cspdg
, s16d

with Cspd given by Eq.(8) within mean field theory. Numeri-
cally, we fit the degree-distribution function to the form
k−gspd / lnsk/md and extract the exponentgspd directly from
results of numerical simulations for each value ofp in steps
of 0.1. However, asp→1, one should be more careful in
handling Eq.(15) in numerical extraction of the exponent as
the prefactor 1/s1−pd diverges and the lnsk/md term be-
comes unimportant due to cancellation effect from the terms
in the parentheses. In this case, it is more convenient to work
from the p=1 limit and extract a functional form from
Eq. (15) that is valid forp→1. The result isPsp,kd,fp/2
+s1−pd /Cgsk/md−gspd /mp2, where gspd is again given by
Eq. (16). This form is used to extract the exponentgspd for
p=0.9 and 1.0. Forpø0.8, using either functional form ex-
tracts the same value ofg. Figure 2 shows the exponentgspd
numerically extracted from simulations, together with the
analytic result. The two sets of results are found to be in
good agreement.

In summary, we proposed and studied a model in which
the nodes are inhomogeneous. The model combines
popularity-driven and fitness-driven preferential attachments
in growing networks. Extensive numerical simulations were
carried out and a mean field theory was developed. The
degree-distribution function shows a predominant power-law
behavior. The exponent takes on a model-dependent, hence
tunable, value depending on the concentrationp of nodes for
which the links are established by a popularity-driven

FIG. 2. The exponentgspd characterizing the degree-distribution
function as obtained by fitting to numerical simulation results
(symbols) for networks of size 107 nodes for values ofp from
p=0 to p=1 in steps of 0.1, and by the mean field theory(dotted
line) given by gspd=1+1/fp/2+s1−pd /Cspdg with Cspd given by
Eq. (8).
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mechanism. The exponentgspd takes on values between
2.255 and 3, which lie within the range of values ofg ob-
served in many real-world networks. Analytic expressions
for the degree-distribution function and the exponentgspd
were derived. Results of mean field theory were found to be

in good agreement with results obtained by numerical simu-
lations.

We wish to thank Oliver K.H. Chung for useful discus-
sions on numerical methods on setting up large networks
efficiently, and Professor DaFang Zheng for useful discus-
sions on fitness-driven growing networks.

[1] R. Albert and A.-L. Barabási, Rev. Mod. Phys.74, 47 (2002).
[2] S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys.51, 1079

(2002).
[3] S. N. Dorogovtsev and J. F. F. Mendes,Evolution of Networks:

From Biological Nets to the Internet and WWW(Oxford Uni-
versity Press, Oxford, 2003).

[4] D. J. Watts,Small Worlds(Princeton University Press, Prince-
ton, 1999).

[5] D. J. Watts,Six Degrees: The Science of a Connected Age
(William Heinemann, London, 2003).

[6] P. Erdös and P. Rényi, Publ. Math. Inst. Hung. Acad. Sci.5, 17
(1960).

[7] B. Bollobás, Random Graphs(Academic Press, London,
1985).

[8] R. Albert, H. Jeong, and A.-L. Barabási, Nature(London) 401,
130 (1999).

[9] B. A. Huberman and L. A. Adamic, Nature(London) 401, 131
(1999).

[10] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajalopa-
gan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw.33,
309 (2000).

[11] S. Redner, Eur. Phys. J. B4, 131 (1998).
[12] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L.

Barabási, Nature(London) 407, 651 (2000).

[13] H. Jeong, S. Mason, A.-L. Barabási, and Z. N. Oltvai, Nature
(London) 411, 651 (2001).

[14] S. Maslov and K. Sneppen, Science296, 910 (2002).
[15] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and

Y. Åberg, Nature(London) 411, 907 (2001).
[16] M. Granovetter, Am. J. Sociol.78, 1360(1973).
[17] M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.98, 404

(2001).
[18] E. L. Berlow, Nature(London) 398, 330 (1999).
[19] J. Travers and S. Milgram, Sociometry32, 425 (1969).
[20] D. J. Watts and S. H. Strogatz, Nature(London) 393, 440

(1998).
[21] A.-L. Barabási and R. Albert, Science286, 509 (1999).
[22] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett.

85, 4629(2000).
[23] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys.

Rev. Lett. 85, 4633(2000).
[24] R. Albert and A.-L. Barabási, Phys. Rev. Lett.85, 5234

(2000).
[25] P. L. Krapivsky, G. J. Rodgers, and S. Redner, Phys. Rev. Lett.

86, 5401(2001).
[26] G. Bianconi and A.-L. Barabási, Europhys. Lett.54, 436

(2001).
[27] G. Ergun and G. J. Rodgers, Physica A303, 261 (2002).

BRIEF REPORTS PHYSICAL REVIEW E69, 067102(2004)

067102-4


